Maximize Z = 100x + 120y , subject to constraints 2x + 3y ≤ 30, 3x + y ≤ 17, x ≥ 0, y ≥ 0.

Minimize Z = 50x+60y , subject to constraints x +2 y ≤ 50 , x + y ≥ 30, x, y ≥ 0.

Corner points of the feasible region for an LPP are (0, 2), (3, 0), (6, 0), (6, 8) and (0, 5).Let F = 4x + 6y be the objective function. Maximum of F – Minimum of F =

In Corner point method for solving a linear programming problem one finds the feasible region of the linear programming problem ,determines its corner points and evaluates the objective function Z = ax + by at each corner point. If M and m respectively be the largest and smallest values at corner points then

A manufacturer produces nuts and bolts. It takes 1 hour of work on machine A and 3 hours on machine B to produce a package of nuts. It takes 3 hours on machine A and 1 hour on machine B to produce a package of bolts. He earns a profit of Rs17.50 per package on nuts and Rs 7.00 per package on bolts. How many packages of each should be produced each day so as to maximise his profit, if he operates his machines for at the most 12 hours a day?